
Rainbow: Adaptive Layout Optimization for
Wide Tables

Haoqiong Bian, Youxian Tao, Guodong Jin, Yueguo Chen(), Xiongpai Qin, Xiaoyong Du

School of Information, Renmin University of China, Beijing, China
DEKE Key Laboratory (Renmin University of China), MOE, Beijing, China

{bianhq,taoyouxian,jinguodong,chenyueguo,qxp1990,duyong}@ruc.edu.cn

Abstract—Popular column stores such as ORC and Parquet
have been widely used in many Hadoop-oriented data analysis
systems. With the effective column skipping and data compres-
sion functionalities provided by column stores, wide tables with
hundreds or even thousands of columns are applied by many
big data analysis applications to avoid the expensive distributed
joins. We found that the performance of such systems can be
further improved by optimizing the physical data layout to fit
certain workloads and system settings. However, it is nontrivial
to perform such optimization manually.

In this demo, we present a data layout optimization tool called
Rainbow, which leverages workload-driven layout optimization
algorithms to adjust data layouts adaptively without intervening
the previous data blocks that have been stored. We also provide a
Web UI for users to interact with the layout optimization process.
Furthermore, Rainbow is open sourced with an accompanying
benchmark for performance evaluation of wide tables.

I. INTRODUCTION

Nowadays, many big data analysis systems share HDFS

(Hadoop Distributed File System) as their common underlying

storage [1], [2]. Large amount of data from various sources

continuously converges and is further dumped into HDFS. As

the de-facto standard of distributed data storage, HDFS pro-

vides big data systems an unified data storage with merits of

fault-tolerance, massive scalability and high R/W throughputs.

Many big data analysis systems such as Hive [1] and

Spark [2] have been built to support both interactive and

batch analysis of the huge and ever-increasing data in HDFS.

In many cases, they present data as two-dimensional wide

tables with the number of columns from a few hundreds to

even thousands. These wide tables are commonly stored as

columnar files such as RCFile [3], ORC [4], Parquet [5] and

CarbonData [6], because of but not limited to the following

advantages: 1) all the required columns of an analytical task

are likely to be read from one single table so that the expensive

join cost can be saved; 2) new columns can be easily added to

an existing table without affecting the existing data analysis

applications; 3) only required columns of a query are fetched

without reading extra data; 4) data is well compressed by the

efficient encoding and compression algorithms.

Although wide table provides very good performance and

the support of application-friendly schema evolution, we found

that the data reading latency of systems running on top of wide

tables can be further reduced with column ordering [7]. By

column ordering, we reorder the physical storage of columns

inside a row group – a horizontal partition of a table. As a

result, frequently co-accessed columns are put closer in a row

group, so that the seek latency – the root cause of data reading

latency – can be largely reduced. Column order is transparent

to queries because of the self-describing mechanisms applied

in individual row groups. It therefore allows a table to be

comprised of a set of row groups with different column orders.

Besides column order, row group size (RGS, the bytes in

a row group) is proven to be another important factor that

affects the reading performance of wide tables [7], [8]. Larger

RGS leads to less row groups and thus less total number

of disk seeks. Since the seek cost is sublinear to the seek

distance [7], larger RGS will generate lower total seek cost

for reading the same amount of data. Furthermore, if the RGS

is too small, a reading task (often reads a few columns from

a row group) is likely to read only a small amount of data,

leading to the task scheduling and initialization overheads to

be the major performance bottleneck. However, a larger row

group consumes more memory during query processing, and

may reduce the degree of data processing parallelism or even

cause OOM errors. It is therefore not that easy to set a proper

RGS for various workloads and system settings manually.

In this demonstration, we present an adaptive wide table

layout optimization tool called Rainbow. It provides a Web

user interface in which user can create a pipeline to transform

and load data from a specific data source into a wide table in

HDFS. Data is fetched from the data source, packed into mini

batches, and loaded into the wide table per mini batch. As

the query workload being collected, Rainbow automatically

triggers a layout optimization procedure to set a proper RGS

and derive an approximation of the optimal column order

(as the column ordering problem is NP-Hard [7]). Estimated

performance gain of the optimized layout is shown in a scatter

diagram. Users can choose to apply the optimized layout or

further evaluate the performance gain in a real HDFS cluster

before making the decision. The new layout will be applied

by Rainbow in the next mini batch.

Rainbow also provides a command line interface, which is

more convenient for data layout optimization of static data and

workloads. Rainbow is open sourced 1 with an accompanying

benchmark for wide tables. The modules in Rainbow are

designed to be a set of loose coupling Java libraries, which can

be easily embedded in other ETL or data analysis systems.

1https://github.com/dbiir/rainbow

1657

2018 IEEE 34th International Conference on Data Engineering

2375-026X/18/$31.00 ©2018 IEEE
DOI 10.1109/ICDE.2018.00200

II. SYSTEM OVERVIEW

As shown in Fig. 1, Rainbow contains six modules (in gray).

The Web UI module and the CLI (command line interface)

module are user interfaces, and the other modules are designed

as a set of libraries. Rainbow collects the workload information

such as the accessed columns of queries, without issuing the

queries for users. This allows us to build Rainbow as an

external module without modifying the existing data analysis

applications and systems. Details of the Rainbow’s modules

are discussed as follows.

Rainbow

 HDFS

Data Analytical
System

(Spark, Presto...)

Wide Table

Web UI CLI

Common Layout
Validator

Layout
Generator

Seek Evaluator

Data Layout Optimization Library

User Interfaces

Data source

Fig. 1. System architecture of Rainbow

A. Web UI, CLI, and Common

The Web UI module works in a client-server mode. The

front-end provides a user-friendly Web interface while the

back-end invokes underlying modules. With the Web UI, users

can interact with Rainbow to perform ETL and optimize the

data layout adaptively. RESTful APIs are provided in this

module to collect the workload information from applications

for workload-driven layout optimization.

The CLI provides a set of commands which are convenient

for layout optimization of static workloads. Users can easily

deploy and run the CLI module anywhere. The Common mod-

ule contains the shared functions and interfaces in Rainbow.

It maintains the configurations and runtime logs as well.

B. Layout Generator

The Layout Generator implements the data layout optimiza-

tion algorithms proposed in [7]. Our previous solution [7] only

considers seek cost in the cost model and optimizes the column

order accordingly. In Rainbow, we revise the cost model so that

the RGS factor is also considered.

To provide a better user experience and convince the

user that an optimized data layout is ‘good’ enough, Layout
Generator provides the estimated query performance on both

the baseline layout and the optimized layout. Based on the

estimation, a scatter diagram is provided in the Web UI.

C. Layout Validator

In some production environments such as a multi-tenant

system, performance guarantee is often required by some

high-priority queries. Although the weight of each query is

considered in our layout optimization algorithms [7] so that

it is not likely to punish an ‘important’ query, user may still

want to test the query performance in real environment to

make sure that the optimized layout is good enough. Layout
Validator helps us to do that. It issues queries to a Spark

or Presto (currently supported) and measures the end-to-end

elapsing time of each query. A small validation cluster can

be configured for the performance validation so that the

production cluster will not be affected.

D. Seek Evaluator

This component is responsible for deriving the seek cost

function according to the underlying hardware and file system.

The seek cost function is used to establish the cost model in

Rainbow. Details of seek cost evaluation is discussed in [7].

III. KEY TECHNIQUES

A. Cost Model

In Rainbow, we focus on reducing data reading cost, which

mainly comes from the first map stage of query execution in

a MapReduce-like system, and takes a majority of the end-to-

end latency for many batch queries [7]. Basically, the reading

cost of a map task (we assume one row group is read by a

map task, although the model can be easily adapted to support

multiple row groups) includes three major parts:

• Constant overhead. It includes the cost of task schedul-

ing, metadata parsing, garbage collection, and the initial

seek cost to read a row group.

• Sequential reading cost. Given the access pattern AP =
{cq,1, cq,2, . . . , cq,m} of a query q, the sequential reading

cost on a row group is SeqRead(q) =
∑m

i=1 size(cq,i)/b,
where b is the sequential read bandwidth of the disk, cq,i
is the ith column that is required by q.

• Seek cost. Given a column order S = {c1, c2, . . . , cn},
the column access pattern AP = {cq,1, cq,2, . . . , cq,m}
of query q, the seek cost of a row group is Seek(q) =∑m−1

i=1 f(dist(cq,i, cq,i+1)), where dist is the distance in

bytes between two data items in a file, and f is the seek

cost function built by Seek Evaluator in Section II-D.

Definition 1 (Query reading cost): Given a query q, a wide

table of N row groups, the reading cost of q is

Cost(q) = N × (ε+ SeqRead(q) + Seek(q)) (1)

where ε is the constant overhead of reading a row group. We

assume that the reading cost of each row group is the same.

The reading cost of the whole workload is then modeled as:

Definition 2 (Workload reading cost): Given a weight wq

for each query q ∈ Q, the reading cost of a workload Q is

Cost(Q) =
∑

q∈Q
(wq × Cost(q)) (2)

The weight wq implies the frequency/importance of the query

q. We apply the workload reading cost as the target to be

optimized for the layout optimization component.

1658

B. Column Ordering

Given a seek cost function and a workload, the column

ordering problem [7] is to find an optimal column order which

brings the minimal seek cost to the workload. This is proved

to be NP-Hard [7], so that we propose a simulated-annealing

based column ordering algorithm called SCOA in [7] to solve

this problem. In SCOA, a column order is a state, and the seek

cost is the energy of a state. Two randomly selected columns

in the current state are swapped to generate a neighbour

state. By accepting the neighbour state probabilistically in a

loop following the annealing schedule, SCOA converges to an

approximation of the optimal column order.

C. Setting Row Group Size

Row group size (RGS) affects the data reading cost of

queries in two aspects:

• RGS affects the size of each column and the distance

between columns in a row group, which further affects

the seek cost of queries.

• Given a table of certain size, the RGS affects the number

of row groups N in the table, which further affects the

data reading cost of queries.

We can however find that the larger RGS is, the lower

data reading cost will be. Accordingly, in Rainbow, we set

RGS according to the memory limitation. Given the allocated

memory size M and parallel degree P of reading tasks

configured on each node in the production cluster, the best

RGS set by Rainbow is RGSbest = M/P/a, where a is the

memory amplifying factor of a reading task. It is calculated by

dividing the maximum memory consumption of a row group

reading task by RGS.

D. Workload Evolution

Workload-driven layout optimization is based on the as-

sumption that the workload evolves gradually without muta-

tion, so that we can predict how data will be accessed from the

recent workload. An effective solution for workload evolution,

which timely detects and discards the outdating queries, is

necessary for workload-driven layout optimization.

In Rainbow, we propose a solution based on two assump-

tions: 1) the temporal locality assumption that the same query

is likely to be re-executed within a certain time duration. 2)

the frequency assumption that frequently executed queries are

more likely to be re-executed in the coming future.

As the layout is optimized according to the access patterns

(APs) of queries, in our solution, we maintain a cache of APs

(denoted as APC). New APs are inserted into APC and the

outdating APs are evicted. A LRU-based caching policy in

Algorithm 1 is proposed to perform the workload evolution

process. When a new query is collected by Rainbow, the AP

of the query is passed to the algorithm. The data structure

APC maintains the latest timestamp and the weight of each

AP. APs in APC are ordered by the timestamp. The weight

of an AP is initialized as 1 and is incremented each time the

same AP hits APC (line 4). Weights of the APs will be used

in layout optimization so that the performance of the APs with

higher weights will be optimized preferentially.

Algorithm 1: AccessPatternCaching

Input: The access pattern AP = {cq,1, cq,2, . . . , cq,m}
of a query q

1 t := current time;

2 if APC.hits(AP) then
3 APC.updateT imestamp(AP, t);
4 APC.incrementWeight(AP);

5 else
6 APC.insert(AP, t);
7 updateCounter ++;

8 APe := APC.earliestAP ();
9 if APe.timestamp < t− L then

10 if prevSize == 0 then
11 updateCounter = 0;

12 prevSize = APC.size;

13 trigger layout optimization and return;

14 APC.evict(APe);
15 updateCounter ++;

16 if prevSize > 0 and updateCounter/prevSize > θ
then

17 updateCounter = 0;

18 prevSize = APC.size;

19 trigger layout optimization;

An AP lifetime L is set by the user for an ETL/optimization

pipeline. It is used to evict the AP with the earliest timestamp

in APC earlier than t − L (line 9-14). The cache size is

controlled by L. This is more intuitive and effective than

setting a fixed cache size in [9] and [10]. The variable

prevSize records the size (number of elements) of APC at

the time of the last layout optimization. It is initialized as

0 when the system starts. The layout optimization is firstly

triggered when the first eviction happens. A threshold θ is

also configured by the user. It is the percentage of elements

updated since the last layout optimization. After the first layout

optimization, in the case of updateCounter/prevSize > θ
(line 16), a new layout optimization process will be triggered

to make the layout adaptive to the updating workload.

IV. DEMONSTRATION

In this section, we present how Rainbow is used in lay-

out optimization. A dataset of 500 GB and 1000 columns

generated by the accompanying benchmark will be used in

demonstration. The benchmark generates data and workload

following the data template and workload template created

according to the real-world use cases of wide table analysis in

Microsoft Bing [7]. A 5-node (1 master and 4 slaves) produc-

tion cluster and a 3-node validation cluster (1 master+slave

and 2 slaves, with Rainbow running on the master) are used

in this demonstration.

1659

A. Pipeline Creation

Fig. 2 shows the Web UI of Rainbow. On the top navigation

bar, user can switch to the Pipeline tab for creating a pipeline.

To create a pipeline, users need to fill in some settings in a

pop-up form, which includes: 1) The type and URL of data

source. Different data sources such as HDFS and Kafka can

be plugged into Rainbow; 2) Initial RGS and the data schema

(without layout optimization); 3) the target storage path of the

wide table on HDFS, into which the loaded data will be stored;

4) the lifetime of the query access patterns and the workload

evolution threshold (discussed in Section III-D).

In this demo, a pipeline will be running in a streaming

manner – source data is read per mini batch (4 GB by default),

and then transformed (by MapReduce) and loaded into HDFS.

B. Layout Optimization

While the ETL pipeline is running, data layout can be

optimized on the fly. As shown in Fig. 2, users can interact

with the layout optimization process of a pipeline on the

Optimization tab page. The whole layout optimization process

includes several steps, which are divided into separate panels

on the page.

Firstly, a small data sample (10 GB by default) is copied

from data source to the validation cluster. This sample is

then transformed into columnar format to evaluate the data

compression ratio, the size of columns in a row group and the

memory amplifying factor. For workload, the access patterns

of queries are submitted to the pipeline through the RESTful

API. While the workload being submitted to the pipeline, the

layout optimization is triggered adaptively by the workload

evolution solution.

Once an optimized layout is derived, its estimated per-

formance gain against the previous applied layout (or the

initial layout) will be then shown intuitively through a scatter

diagram in the Layout Strategy panel. User can interact with

the scatter diagram to see detailed information of each query.

User can apply the optimized layout in the next mini batch

of ETL by clicking the Accept button in the Layout Strategy
panel, or further validate the performance gain in a scatter

diagram in the validation panel by clicking the Validate button.

The optimized layout will be discarded if it is not accepted

before the next layout is derived. A timeline is also shown in

the bottom of the page, in which user can find the historical

actions performed on the pipeline.

Demonstration videos and documents of Rainbow are pro-

vided in our git repository (https://github.com/dbiir/rainbow).

V. ACKNOWLEDGEMENTS

Yueguo Chen is the corresponding author. This work is

supported by Science and Technology Planning Project of

Guangdong under grant (No. 2015B010131015), the National

Science Foundation of China under grant (No. U1711261,

61472426 and 61432006), and the open research program of

State Key Laboratory of Computer Architecture, Institute of

Computing Technology, Chinese Academy of Science (No.

CARCH201510).

Fig. 2. The Web user interface of layout optimization

REFERENCES

[1] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang,
S. Anthony, H. Liu, and R. Murthy, “Hive - a petabyte scale data
warehouse using hadoop,” in ICDE, 2010, pp. 996–1005.

[2] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, and M. Zaharia, “Spark
sql: Relational data processing in spark,” in SIGMOD, 2015, pp. 1383–
1394.

[3] Y. He, R. Lee, Y. Huai, Z. Shao, N. Jain, X. Zhang, and Z. Xu, “Rcfile:
A fast and space-efficient data placement structure in mapreduce-based
warehouse systems,” in ICDE, 2011, pp. 1199–1208.

[4] Orc. [Online]. Available: https://orc.apache.org/
[5] Parquet. [Online]. Available: http://parquet.apache.org/
[6] Carbondata. [Online]. Available: http://carbondata.apache.org/
[7] H. Bian, Y. Yan, W. Tao, L. J. Chen, Y. Chen, X. Du, and T. Mosci-

broda, “Wide table layout optimization based on column ordering and
duplication,” in SIGMOD, 2017, pp. 299–314.

[8] Y. Huai, S. Ma, R. Lee, O. O’Malley, and X. Zhang, “Understanding
insights into the basic structure and essential issues of table placement
methods in clusters,” PVLDB, vol. 6, no. 14, pp. 1750–1761, 2013.

[9] I. Alagiannis, S. Idreos, and A. Ailamaki, “H2o: a hands-free adaptive
store,” in SIGMOD, 2014.

[10] J. Arulraj, A. Pavlo, and P. Menon, “Bridging the archipelago between
row-stores and column-stores for hybrid workloads,” in SIGMOD, 2016,
pp. 583–598.

1660

